
MONTE CARLO APPROXIMATION OF THE SCORE
FUNCTION AND HESSIAN MATRIX AND ITS USE IN

LIKELIHOOD OPTIMISATION

Jingyi Ni

Supervisor: Doctor Feng Chen

School of Mathematics and Statistics
UNSW Sydney

August 2020

Submitted in partial fulfilment of the requirements of the degree of
Master of Statistics

Plagiarism statement

I declare that this thesis is my own work, except where acknowledged, and has not
been submitted for academic credit elsewhere.

I acknowledge that the assessor of this thesis may, for the purpose of assessing it:

• Reproduce it and provide a copy to another member of the University; and/or,
• Communicate a copy of it to a plagiarism checking service (which may then

retain a copy of it on its database for the purpose of future plagiarism check-
ing).

I certify that I have read and understood the University Rules in respect of Student
Academic Misconduct, and am aware of any potential plagiarism penalties which
may apply.

By signing this declaration I am agreeing to the statements and conditions above.

Signed: Date:

i

07/08/2020

Acknowledgements

By far the greatest thanks must go to my supervisor, Dr.Feng Chen, for the guid-
ance, care and support he provided. He always answer my questions patiently,
guide me to read papers, think about problems, and solve problems. Without his
guidance, I would not finish this thesis, nor would I learn a lot from this process.

Thanks must also go to Guangyu Lu, who is also under supervision by Dr.Chen.
We work on similar topics and thus communicating with Guangyu is an important
part of my study.

Jingyi Ni, 5 August 2020.

ii

Abstract

In this thesis, we provide a general introduction of the State Space model and Parti-
cle Filter(PF) algorithm and then show how to implement the PF algorithm in state
inference and parameter inference problems. In the maximum likelihood method for
parameter inference, we introduce how to approximate the log-likelihood, the score
function and Hessian matrix by PF algorithm. Some examples are presented to
show the resulting estimates of these terms and the result of parameter inference.

iii

Contents

Chapter 1 Introduction 1
1.1 General Knowledge of State Space Model 1
1.2 Inference Problems for State Space Model 3
1.3 Filtering Algorithms . 5

1.3.1 Linear Filtering Algorithms 6
1.3.2 Nonlinear Filtering Algorithms 6
1.3.3 Monte Carlo Approximation 7

Chapter 2 State Inference Using Particle Methods 8
2.1 Recursive Bayesian Estimation . 8
2.2 Monte Carlo and Importance Sampling 11

2.2.1 Monte Carlo method . 11
2.2.2 Importance Sampling . 13
2.2.3 Sequential Importance Sampling 15
2.2.4 Resampling . 17
2.2.5 Particle Filter Algorithm . 18

2.3 State Estimation in Linear Gaussian SSM 21

Chapter 3 Parameter Inference Using Particle Methods 24
3.1 Bayesian parameter inference . 24

3.1.1 Overview of Bayesian methods 24
3.1.2 Estimating the parameters in LGSS model 24
3.1.3 Estimating the parameters in nonlinear model 25

3.2 Maximum likelihood parameter inference 27
3.2.1 Overview of ML methods 27
3.2.2 Estimating the parameters in LGSS model 28
3.2.3 Estimating the parameters in nonlinear model 30

Chapter 4 Conclusion 35

References 36

iv

Chapter 1

Introduction

In this chapter, we provide a general introduction of State Space Model(SSM), in-
cluding the general expression, the applications and some examples of this model.
We also talk about the inference problems of SSM and the developing process of
filtering algorithms.

1.1 General Knowledge of State Space Model

State Space models, also known as hidden Markov models, are widely used models
in various fields, including ecology, econometrics, engineering, environmental sci-
ences, and finance; see [1, 2, 3, 4, 5]. The unobserved states of SSM which change
over time often reflect the true states of our systems, so we are interested in obtain-
ing some unknown state variables from measurement. By this kind of estimation
of SSM, we can do orbit tracking for aerospace industry, position prediction for
Radar tracking target, Beta coefficient analysis for stock,etc. Thus, it is of great
significance to study on State Space models.

Figure 1.1: Graphical model of an SSM with latent process x and observed process
y.

As shown in figure 1.1, a state space model consists of two stochastic processes
{xt}t≥1 and {yt}t≥1, where xt denotes the latent state (top) and yt denotes the
observation (bottom) from the system at time t. We assume that the states and
observations are real-valued, i.e., yt ∈ Y ⊆ Rny and xt ∈ X ⊆ Rnx . The latent state
{xt}t≥1 is modelled as a first-order Markov process of initial density µθ(x), i.e., the
latent state xt only depends on the previous state xt−1. That is, all the information
in the past states x1:t−1 , {xs}t−1

s=1 is summarized in the most recent state xt−1. The
observations y1:t are conditionally independent as the observation yt is only related

1

to the corresponding state xt.

The densities of the latent state and the observation process are fθ (xt | xt−1) and
gθ (yt | xt), respectively, where θ ∈ Θ ⊂ Rp is the unknown parameter vector.
The density fθ (xt | xt−1) describes the probability that the next state is xt given
the previous state xt−1. And for the observation process, gθ (yt | xt) describes the
probability that the observation is yt given the state xt. Therefore, with the notation
in place, a general SSM can be expressed as

x1 ∼ µθ (x1) , xt |xt−1 ∼ fθ (xt | xt−1) , yt|xt ∼ gθ (yt | xt) (1.1.1)

Here are some examples of state space models.

1. ARMA Model
The general ARMA(p, q) model is

yt = φyt−1 + · · ·φpyt−p + ηt + θ1ηt−1 + · · ·+ θqηt−q (1.1.2)

where ηt is white noise. Let m = max(p, q + 1), then we can rewrite the
ARMA(p, q) model as

yt = φyt−1 + · · ·φpyt−m + ηt + θ1ηt−1 + · · ·+ θm−1ηt−m+1 (1.1.3)

where some of the AR or MA coefficients will be zero unless p = q+ 1. Define
xt as

xt =

yt

φ2yt−1 + · · ·+ φpyt−m+1 + θ1ηt + · · ·+ θm−1ηt−m+2
...

φmyt−1 + θmηt

 (1.1.4)

Then the ARMA(p, q) model can be put in state space form:

xt =

φ1 1 0 · · · 0
φ2 0 1 · · · 0
...

...
...

. . .
...

φm−1 0 0 · · · 1
φm 0 0 · · · 0

xt−1 +

1
θ1
...

θm−2

θm−1

 ηt (1.1.5)

yt =
[

1 0 0 · · · 0
]
xt (1.1.6)

2. Time Varying Parameter Model
A time varying parameter model can be used to simulate financial markets.

2

The general model is:

Rt = αt + βtRmt + vt
αt = αt−1 + w1t, w1t ∼ N (0, σ2

1)
βt = βt−1 + w2t, w2t ∼ N (0, σ2

2)
(1.1.7)

where Rt is our return on assets and Rmt is the market interest rate. Define
xt as :

xt =

[
αt
βt

]
(1.1.8)

Then the time varying parameter model can be written as a state space model:

xt =

[
1 0
0 1

]
xt−1 +

[
w1t

w2t

]
(1.1.9)

Rt = [1 Rmt]xt + vt (1.1.10)

An overview of some concrete applications in many other fields including earthquake
counts, polio counts, rainfall occurrence data, glacial varve data and daily returns
on a share can be seen in [6].

1.2 Inference Problems for State Space Model

There are often two different inference problems connected to SSMs: the state in-
ference problem and the parameter inference problem. The first problem is to infer
the density of the latent state process given the observations and the model where
the parameter θ is known. That is, we would like to determine the value of xt given
the information in the observations y1:t, i.e., pθ (xt | y1:t). The second problem is to
infer the value of the parameter vector θ from the observations y1:T .

Actually, parameter inference is often the primary problem of interest. The exist-
ing inference methods can be classified into two categories: Bayesian or Maximum
Likelihood (ML).

1. Maximum likelihood parameter inference

The likelihood function of an SSM can be expressed as

L(θ) = pθ (y1:T) = pθ (y1)
T∏
t=2

pθ (yt | y1:t−1) . (1.2.1)

To simplify calculations and improve the numerical stability of many algo-
rithms, we often replace the likelihood function with the log-likelihood func-
tion given by

`(θ) = log pθ (y1:T) = log pθ (y1) +
T∑
t=2

log pθ (yt | y1:t−1) . (1.2.2)

3

We regard the likelihood as a function of the parameter and thus, the pa-
rameter which maximizes the likelihood or equivalently the log-likelihood is
what we want. We should select the parameter that together with the model
is the most likely to have been generated the observations. Therefore, the
parameter inference problem in the ML setting is given by

θ̂ML = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

`(θ), (1.2.3)

Where θ̂ML denotes the ML parameter estimate.

The score function and observed information matrix also play an important
role in parameter inference problems. The score function is defined as the
gradient of the log-likelihood,

S (θ′) = ∇`(θ)|θ=θ′ . (1.2.4)

The observed information matrix is defined as the negative Hessian of the
log-likelihood,

J (θ′) = − ∇2`(θ)
∣∣
θ=θ′

. (1.2.5)

The score function can be interpreted as the slope of the log-likelihood and
the observed information matrix measures the amount of information in the
data regarding the parameter θ. Since θ̂ML denotes the ML parameter esti-
mate, the score function is zero when evaluated around this estimate and the
observed information matrix should be positive definite.

2. Bayesian parameter inference

Another common method is to use Bayesian. Detailed introduction of Bayesian
analysis can be seen in [7, 8]. Different from the ML parameter estimate,
where we assume that the true parameter is a specific value, here we regard
the true parameter as a random variable following a specific distribution. Our
objective in Bayesian parameter inference is to infer an updated probability
distribution called the posterior distribution given the information in the data
described by the likelihood pθ (y1:T) and prior distribution of θ denoted p (θ).

p (θ | y1:T) =
pθ (y1:T) p(θ)∫
pθ (y1:T) p(θ)dθ

∝ pθ (y1:T) p(θ). (1.2.6)

From the above, we can see that both of the two methods are dependent on the
likelihood function which satisfies,

pθ (y1:T) =

∫
pθ (x1:T , y1:T) dx1:T , (1.2.7)

4

where pθ (x1:T , y1:T) denotes the joint density and is given from equation (1.1.1) by,

pθ (x1:T , y1:T) = µθ (x1)
T∏
t=2

fθ (xt | xt−1)
T∏
t=1

gθ (yt | xt) . (1.2.8)

For the state inference, the posterior density of the latent states can also be given
by Bayesian method:

pθ (x1:t | y1:t) =
pθ (x1:t, y1:t)

pθ (y1:t)
. (1.2.9)

This posterior density is useful for computing the score vector of the log-likelihood
according to Fisher’s identity,

∇θ`t(θ) =

∫
∇θ log pθ (x1:t, y1:t) · pθ (x1:t | y1:t) dx1:t. (1.2.10)

Therefore, in theory, it seems that it is possible to do the inference from the above
equations. For the linear Gaussian model, it is easy to check that pθ (x1:t, y1:t) is
a Gaussian distribution and Kalman filtering algorithm [9] is always the optimal
solution of the estimation. However, in practice, most of the problems we need to
deal with are nonlinear non-Gaussian state space models whose likelihood function
is analytically intractable and the posterior might not be any known distribution.
As a consequence, we cannot compute many of the integrals depending on the pos-
terior distribution in closed-form. To solve these problems, a number of different
numerical approaches and sampling methods have been developed. Thus, the main
topic in this thesis is to deal with these problems by particle filter method, also
known as Sequential Monte Carlo (SMC) method.

1.3 Filtering Algorithms

According to different time series of measurements and estimates, the inference
problems in an SSM can be classified into mainly two types: filtering and smoothing.
Both the filtering and smoothing problem can be marginal (inference on a single
state), k-interval (inference of k states) or joint (inference on all states). In filtering,
only observations y1:t collected until the current time step t are used to infer the
current state xt. Inferring the value of the current state xt with t ≤ T by using
all the collected observations including (possibly) future observations y1:T is called
smoothing. In Table 1.1, we can see some common filtering and smoothing problems
in SSMs.

Name Density
(Marginal) filtering pθ (xt | y1:t)
(Marginal) smoothing (t ≤ T) pθ (xt | y1:T)
Joint smoothing pθ (x1:T | y1:T)
Fixed-interval smoothing (s < t ≤ T) pθ (xs:t | y1:T)
Fixed-lag smoothing (for lag ∆) pθ (xt−∆−1:t | y1:t)

Table 1.1: Common filtering and smoothing densities in SSMs

5

Many different filtering algorithms have been developed to deal with these filtering
and smoothing problems in SSMs.

1.3.1 Linear Filtering Algorithms

When we refer to optimal estimation in filtering and smoothing problems, we al-
ways means estimating the value of unknown states or parameters by some optimal
chosen criterion. A well known method of parameter estimate was Least Squares
Estimation raised by Gauss in 1795 [10, 11]. Norbert Wiener proposed Wiener
Filtering Algorithm in 1940s in order to solve the problem of automatic aiming
and firing control of anti-aircraft artillery system problem[12]. The discrete time
model of this filtering algorithm was proposed by Andrey Nikolaevich Kolmogorov
in 1941[13]. Thus, this is often referred to as Wiener-Kolmogorov filtering theory.
Although Wiener Filtering Algorithm is an optimal filtering algorithm for linear
systems, all the information in the past time is need in the algorithm, so it is dif-
ficult to perform on-line recursive calculation. In 1960, this problem was solved by
Kalman Filter[14]. The KF algorithm only depends on one previous observation
in the estimation procedure, easy to carry out on-line recursive calculation. And
meantime, for linear Gaussian systems, KF algorithm is also an optimal filtering
algorithm. An important breakthrough here is that State Space Model is used to
define the KF algorithm, which directly result in the wide use of State Space model
later in various fields. Most nonlinear filtering algorithms are also developed from
this algorithm.

1.3.2 Nonlinear Filtering Algorithms

However, most systems are nonlinear in reality so that the KF algorithm cannot be
used under this situation. The extended Kalman filtering algorithm(EKF)[15, 16]
was developed based on the structure of Kalman filtering algorithm. It linearizes
the nonlinear system by Taylor series expansion, which lead to a suboptimal solu-
tion of the state variable estimation. The extended Kalman filtering algorithm is
widely used in weak nonlinear state space models because of the high efficiency of
the calculation. But for the system with high nonlinearity, the linearization process
makes the result not accuracy enough as the higher order terms of Taylor series
expansion cannot be ignored directly. What’s more, higher order Taylor series ex-
pansion needs more computing resources and will make the algorithm inefficient.

Another approximation method is called Unscented Kalman Filter(UKF) which is
developed based on Unscented Transform(UT) [17]. This algorithm improves the
calculation accuracy to some extent in comparison to EKF. However, the EKF
and UKF algorithms both are only applicable to the systems where the noises fol-
low the Gaussian distribution. Other nonlinear filtering algorithms include Central
Difference Kalman Filter(CDKF), Divided Difference Kalman Filter(DDKF) and
Quadrature Kalman Filter(QKF).

6

1.3.3 Monte Carlo Approximation

In order to work on non-Gaussian noise, a Particle Filter (PF) algorithm based
on Sequential Monte Carlo (SMC) structure called Bootstrap Filter was created in
1993 [18]. This is the important milestone for the later rapid development of par-
ticle filter. The PF algorithm uses a set of weighted samples (also called particles)
to represent the posterior distribution of the random process given noise and obser-
vations. The estimation of unknown variables is realized by recursively calculating
and adjusting the weights of the particles.

The predecessor of the PF algorithm is the Monte Carlo (MC) method based on
Sequential Importance Sampling (SIS). The MC integration method based on SIS
was used in physics and statistics in 1950s [20]. However, this method had not
been fully and effectively developed for a long period of time because of the parti-
cle degeneracy problem in SIS until Bootstrap Filter appeared. The solution is to
add resampling process to the algorithm and thus the SIS method is improved to
Sequential Importance Resampling method(SIR). However, SIR also leads to Sam-
ple Impoverishment problem, which means too-few samples at a certain moment.
There are many methods to improve the PF algorithm around these issues , in-
cluding choosing better importance density function, getting suitable resampling
method, etc.

7

Chapter 2

State Inference Using Particle Methods

In this chapter we assume the parameter θ is known and we focus on the problem
of estimating the latent process {xt}t≥1 sequentially given the observations. The
estimation process also provides us with an on-line scheme to compute {pθ (y1:t)}t≥1.
The particle approximation of these terms are the main topic to be discussed in this
chapter.

2.1 Recursive Bayesian Estimation

Generally speaking, regardless of linear systems or nonlinear systems, the optimal
filtering problem can be solved by recursive Bayesian estimation [19]. The key idea
of recursive Bayesian estimation is to estimate the posterior probability density
function based on prior knowledge and data information. The complete algorithm
often consists of two steps: the prediction process and the update process.

To simplify the problem, we first consider the task of estimating recursively in time
the sequence of marginal posteriors {p (xt | y1:t)}t≥1. Assume that the posterior
probability density p (xt−1 | y1:t−1) is known, then the process of recursive Bayesian
estimation is as follows:

1. Prediction: we predict p (xt | y1:t−1) from p (xt−1 | y1:t−1). According to Chapman-
Kolmogorov Equation, we can have

p (xt | y1:t−1) =

∫
p (xt | xt−1) p (xt−1 | y1:t−1) dxt−1, (2.1.1)

where p (xt | xt−1) is the Markov state transition density function fθ (xt | xt−1)
which is decided by the model.

2. Update: we update p (xt | y1:t) when we have new observation at time t. By
Bayes’ theorem, we have

8

p (xt | y1:t) =
p (y1:t | xt) p (xt)

p (y1:t)

=
p (yt, y1:t−1 | xt) p (xt)

p (yt, y1:t−1)

=
p (yt | y1:t−1, xt) p (y1:t−1 | xt) p (xt)

p (yt | y1:t−1) p (y1:t−1)

=
p (yt | y1:t−1, xt) p (xt | y1:t−1) p (y1:t−1) p (xt)

p (yt | y1:t−1) p (y1:t−1) p (xt)

=
p (yt | y1:t−1, xt) p (xt | y1:t−1)

p (yt | y1:t−1)

(2.1.2)

Since the observations y1:t are conditionally independent, we can have

p (yt | y1:t−1, xt) = p (yt | xt) . (2.1.3)

Therefore, the posterior distribution can be written as

p (xt | y1:t) =
p (yt | xt) p (xt | y1:t−1)

p (yt | y1:t−1)
, (2.1.4)

where p (yt | xt) is defined in the model by gθ (yt | xt), and p (yt | y1:t−1) is the
normalizing constant

p (yt | y1:t−1) =

∫
p (yt | xt) p (xt | y1:t−1) dxt. (2.1.5)

Markov Transition Density
−1

Marginal Density for Observation

Prediction Process
1: −1

Update Process by Bayes’ Theorem

Prior Density
−1 1: −1

Posterior Density
1:

t=t+1

Figure 2.1: Process of the recursive Bayesian estimation.

9

Therefore, we have completed the recursive Bayesian estimation process as shown
in Figure 2.1

In a similar manner, the smoothing problem can be solved by

p (xt+1 | y1:t) =

∫
p (xt+1 | xt) p (xt | y1:t) dxt, (2.1.6)

p (xt | y1:T) = p (xt | y1:t)

∫
p (xt+1 | xt) p (xt+1 | y1:T)

p (xt+1 | y1:t)
dxt+1. (2.1.7)

Since p (xt | y1:t) is the marginal density of posterior density p (x1:t | y1:t), the general
equation of joint posterior density obtained by recursive Bayesian estimation is

p (x1:t | y1:t) = p (x1:t−1 | y1:t−1)
p (xt | xt−1) p (yt | xt)

p (yt | y1:t−1)
, (2.1.8)

where the normalizing constant is

p (yt | y1:t−1) =

∫
p (x1:t−1 | y1:t−1) p (xt | xt−1) p (yt | xt) dx1:t. (2.1.9)

Equation (2.1.1) is known as the prediction step and (2.1.4) is known as the update
step. However, most particle filtering methods rely on a numerical approximation
of recursion (2.1.8) and not of (2.1.1) and (2.1.4).

If we can compute p (x1:t | y1:t) and thus p (xt | y1:t) sequentially, then the marginal
likelihood p (y1:t) can also clearly be evaluated recursively using

p (y1:t) = p (y1)
t∏

k=2

p (yk | y1:k−1) (2.1.10)

where p (yk | y1:k−1) is of the form (2.1.9).

Actually, the recursive process is the general framework of the filtering algorithms.
Yu-Chi Ho and Robert C. K. Lee first studied on the recursive Bayesian filtering
problem and pointed that Kalman filtering algorithm is a special case of Bayesian
filtering[19]. As we discussed before, the recursions can only be solved analytically
for two different classes of SSMs: linear Gaussian SSMs and SSMs with finite state
processes. For the former, the recursions can be implemented using Kalman filter
(KF).

If the system does not satisfy the linear Gaussian condition, it is difficult to obtain
the analytical solution of Bayesian filtering. Two main methods are used to solve
nonlinear systems. One is the analytical approximation for models with Gaussian
noise, such as the EKF discussed in chapter 1. The other method is simulation

10

approximation based on Monte Carlo when noise is non-Gaussian, such as the Par-
ticle Filter(PF) method we will discuss later. Figure 2.2 shows the classification of
Bayesian filtering.

Bayesian
Filtering

Linear Model Gaussian
Noise Kalman Filter

Nonlinear
Model

Gaussian
Noise

Analytical
Approximate EKF

Non-Gaussian
Noise

Monte Carlo
Approximate Particle Filter

Figure 2.2: Classification of Bayesian filtering.

2.2 Monte Carlo and Importance Sampling

Generally speaking, the Particle Filter method can be seen as the application of
Monte Carlo method in Bayesian estimation and is accessible to any nonlinear sys-
tem which can be described by State Space model. Since PF algorithm is developed
from the Monte Carlo (MC) method based on Sequential Importance Sampling (SIS)
and improved by Sequential Importance Resampling method(SIR), we will intro-
duce PF starting from MC method and importance sampling in this section.

2.2.1 Monte Carlo method

MC methods are a collection of statistical simulation methods based on sampling
and the strong law of large numbers (SLLN). The idea is to use a large number
of sample points in the state space to approximate the posterior probability distri-
bution function of the variable. As shown in Figure 2.3, the circles in the figure
represent discrete sample points, thus the integration problem is transformed into
a summation problem of finite sample points.

Here, we consider estimating the expected value (an integral) of a function ϕ(x)

ϕ̂ = Eπ[ϕ(x)] =

∫
ϕ(x)π(x)dx (2.2.1)

where π(x) denotes a (normalised) distribution that x follows. If we can sample
a set of independently identically distribution(IID) particles {x1, x2, · · · , xN} from
π(x), as a consequence of the SLLN, we can estimate the expectation by the sample
average

ϕ̂MC =
1

N

N∑
i=1

ϕ
(
x(i)
)
, x(i) ∼ π(x). (2.2.2)

11

P(x)

Figure 2.3: MC method for integration problem.

Similarly, for Bayesian filtering problem, we can sample IID particles {xi1:t}
N
i=1 from

posterior probability density p (x1:t | y1:t). Then the posterior probability density
can be approximated by the following formula,

p̂ (x1:t | y1:t) =
1

N

N∑
i=1

δ
(
x1:t − x(i)

1:t

)
, (2.2.3)

where δ(·) is Dirac-delta function defined by

δ(x) =

{
+∞, x = 0
0, x 6= 0

(2.2.4)

and is also constrained to satisfy the identity,∫ ∞
−∞

δ(x)dx = 1. (2.2.5)

Based on this approximation, the conditional expectation of function ϕ(x1:t)

E [ϕ (x1:t)] =

∫
ϕ (x1:t) p (x1:t | y1:t) dx1:t (2.2.6)

can be approximated by

Ê [ϕ (x1:t)] =
1

N

N∑
i=1

∫
ϕ (x1:t) δ

(
x1:t − x(i)

1:t

)
dx1:t

=
1

N

N∑
i=1

ϕ
(
x

(i)
1:t

) (2.2.7)

The convergence of this estimator is guaranteed by SLLN, i.e.

Ê [ϕ (x1:t)]
a.s−→ E [ϕ (x1:t)] , N →∞. (2.2.8)

12

Therefore, in theory, we can use the mean value of the sample particles to estimate
the expectation. The main advantage of Monte Carlo methods is that the variance
of the approximation error decreases at a rate of O(1/N) regardless of the dimen-
sion of the space. However, the problem of this approach is also obvious. Since
we don’t know the posterior probability density p (x1:t | y1:t), we certainly cannot
directly sample from it. In this case, importance sampling (IS) [21] can be used to
sample from another distribution called the proposal distribution (or importance
distribution) q (x1:t | y1:t) and adapt the particles using a weighting scheme.

2.2.2 Importance Sampling

Importance sampling is the basis of all the algorithms developed later on. By using

the particle system
{
w

(i)
t , x

(i)
t

}N
i=1

, where x
(i)
t and w

(i)
t denote particle i at time t

and its corresponding (unnormalised) importance weight, we can approximate the
posterior probability density by

p̂ (x1:t | y1:t) ,
N∑
i=1

w̃
(i)
t δ
(
x1:t − x(i)

1:t

)
(2.2.9)

w̃
(i)
t ,

w
(i)
t∑N

k=1w
(k)
t

. (2.2.10)

In practice, sampling from posterior probability density is impossible, so we need
an importance distribution q (x1:t | y1:t) which is easily to be sampled from. To see
how it works, first we rewrite the conditional expectation of function ϕ(x1:t) as

E [ϕ (x1:t)] =

∫
ϕ (x1:t) p (x1:t | y1:t) dx1:t

=

∫
ϕ (x1:t)

p (x1:t | y1:t)

q (x1:t | y1:t)
q (x1:t | y1:t) dx1:t

=

∫
ϕ (x1:t)

p (y1:t | x1:t) p (x1:t)

q (x1:t | y1:t) p (y1:t)
q (x1:t | y1:t) dx1:t

=

∫
ϕ (x1:t)

wt (x1:t)

p (y1:t)
q (x1:t | y1:t) dx1:t

(2.2.11)

13

where wt (x1:t) denotes the weight of particle x1:t and is in the form

wt (x1:t) =
p (y1:t | x1:t) p (x1:t)

q (x1:t | y1:t)

=
p (x1:t | y1:t) p (y1:t)

q (x1:t | y1:t)

∝ p (x1:t | y1:t)

q (x1:t | y1:t)
.

(2.2.12)

If we write p (y1:t) in the following integral,

p (y1:t) =

∫
p (y1:t | x1:t) p (x1:t) dx1:t (2.2.13)

then the conditional expectation of function ϕ(x1:t) can be transformed to the ratio
of two expectations on distribution q (x1:t | y1:t). The detailed process of deduction
is as follows.

E [ϕ (x1:t)] =

∫
ϕ (x1:t)

wt (x1:t)

p (y1:t)
q (x1:t | y1:t) dx1:t

=
1

p (y1:t)

∫
ϕ (x1:t)wt (x1:t) q (x1:t | y1:t) dx1:t

=

∫
ϕ (x1:t)wt (x1:t) q (x1:t | y1:t) dx1:t∫

p (y1:t | x1:t) p (x1:t) dx1:t

=

∫
ϕ (x1:t)wt (x1:t) q (x1:t | y1:t) dx1:t∫

wt (x1:t) q (x1:t | y1:t) dx1:t

=
Eq [ϕ (x1:t)wt (x1:t)]

Eq [wt (x1:t)]

(2.2.14)

Therefore, now we can sample IID particles {xi1:t}
N
i=1 from importance distribution

q (x1:t | y1:t) and apply the MC method to get

q̂ (x1:t | y1:t) =
1

N

N∑
i=1

δ
(
x1:t − x(i)

1:t

)
, (2.2.15)

14

and

Ê [ϕ (x1:t)] =

1
N

∑N
i=1 ϕ

(
x

(i)
1:t

)
wt

(
x

(i)
1:t

)
1
N

∑N
i=1 wt

(
x

(i)
1:t

)
=

N∑
i=1

ϕ
(
x

(i)
1:t

) wt

(
x

(i)
1:t

)
∑N

i=1wt

(
x

(i)
1:t

)
=

N∑
i=1

ϕ
(
x

(i)
1:t

)
w̃t

(
x

(i)
1:t

)
,

(2.2.16)

where w̃t

(
x

(i)
1:t

)
is the normalized importance weight, given by

w̃t

(
x

(i)
1:t

)
=

wt

(
x

(i)
1:t

)
∑N

i=1wt

(
x

(i)
1:t

) , w̃
(i)
t i = 1, . . . , N (2.2.17)

and satisfies

w̃it ∈ [0, 1],
N∑
i=1

w̃it = 1. (2.2.18)

2.2.3 Sequential Importance Sampling

In the method of importance sampling, all the observation data until the current
time step t are required to estimate the posterior probability density. That is, when
new observation data arrives, the importance weight of the entire state sequence
needs to be recalculated again. Thus, to avoid the computational complexity, we
can apply the sequential analysis to MC method to achieve a recursive algorithm
called Sequential Importance Sampling(SIS).

This solution involves selecting an importance distribution which has the following
structure

q (x1:t | y1:t) = q (xt | x1:t−1, y1:t) q (x1:t−1 | y1:t)

= q (xt | x1:t−1, y1:t) q (x1:t−1 | y1:t−1) .
(2.2.19)

From equation (2.1.8) we have,

p (x1:t | y1:t) ∝ p (x1:t−1 | y1:t−1) p (xt | xt−1) p (yt | xt) . (2.2.20)

Thus, the associated unnormalised weights can be computed recursively using the

15

decomposition

w
(i)
t ∝

p
(
x

(i)
1:t | y1:t

)
q
(
x

(i)
1:t | y1:t

)
∝
p
(
x

(i)
1:t−1 | y1:t−1

)
p
(
x

(i)
t | x

(i)
t−1

)
p
(
yt | x(i)

t

)
q
(
x

(i)
t | x

(i)
1:t−1, y1:t

)
q
(
x

(i)
1:t−1 | y1:t−1

)
= w

(i)
t−1

p
(
x

(i)
t | x

(i)
t−1

)
p
(
yt | x(i)

t

)
q
(
x

(i)
t | x

(i)
1:t−1, y1:t

) .

(2.2.21)

To choose a suitable importance distribution, we assume q
(
x

(i)
t | x

(i)
1:t−1, y1:t

)
=

q
(
x

(i)
t | x

(i)
t−1, yt

)
, then equation (2.2.21) can be written as

w
(i)
t ∝ w

(i)
t−1

p
(
x

(i)
t | x

(i)
t−1

)
p
(
yt | x(i)

t

)
q
(
x

(i)
t | x

(i)
t−1, yt

) . (2.2.22)

The normalised weight w̃
(i)
t is calculated by equation (2.2.17). And the posterior

probability density can be approximated by

p̂ (xt | y1:t) =
N∑
i=1

w̃
(i)
t δ
(
xt − x(i)

t

)
. (2.2.23)

So far, we have completed the process of SIS algorithm. We randomly sample par-
ticles from the proposal distribution, sequentially calculate the corresponding im-
portance weight of particles according to equation (2.2.21), and finally approximate
the posterior probability distribution of the system state in the form of weighted
summation of particles, so as to get the recursive estimate of state expectation:

x̂t =
N∑
i=1

x
(i)
t · w̃

(i)
t . (2.2.24)

In the classical bootstrap particle filter algorithm, the Markov transition density
p (xt | xt−1) is chosen to be the proposal distribution, i.e.

q
(
x

(i)
t | x

(i)
t−1, yt

)
= p

(
x

(i)
t | x

(i)
t−1

)
. (2.2.25)

16

Thus the importance weight is calculated sequentially by

w
(i)
t ∝ w

(i)
t−1p

(
yt | x(i)

t

)
. (2.2.26)

2.2.4 Resampling

It appears that we have provided a feasible solution to the filtering problem, how-
ever, it is important to be aware that the method presented here suffers from severe
drawbacks. The main problem of this algorithm is that the variance of the estimate
increases exponentially with t [22]. This results from that the particle weights dete-
riorate over time and in the limit most particle weights become very small (almost
zero) after a few iterations. Hence, many ineffective number of particles consume
a lot of computational resources but contribute a little to the posterior estimate,
even influence the accuracy of the algorithm. This phenomenon is called Particle
Degeneracy.

Resampling techniques are a key ingredient of SMC methods which solve particle
degeneracy problem in some important scenarios. By including a resampling step
into the SIS algorithm, we can focus the computational efforts on the “promising”
regions of the state space. The resampling step essentially duplicates particles with
high weights and discard particles with low weights, while keeping the total number
of particles fixed.

The degree of particle degeneracy is measured by effective sample size [23, 24]. For a
sample set withN sample points, the effective sample sizeNeff can be approximated
by

Neff =
N

1 + Var
(
wjk
) . (2.2.27)

However, the calculation of the above equation is too complex. Thus, another
simpler approximation is used in actual application

N̂eff =
1∑N

i=1 (w̃ik)
2 . (2.2.28)

The smaller the effective sample size Neff , the more serious the particle degeneracy
phenomenon. In order to decide the time of applying resampling algorithm, we often
set a threshold value Nth to compare with N̂eff . When the inequality N̂eff < Nth

happens, which means the particle degeneracy problem is serious and unacceptable,
the resampling algorithm should be used to increase the effective sample size.

Although the resampling step partially solves the particle degeneracy problem, it
also results in another problem called Sample Impoverishment [25]. A lot of parti-
cles with high weights are duplicated in the resampling step, thus the particles in

17

the resampled sample set are no longer independent. More and more of the same
particles cause the sample set to lose its diversity. To balance between the parti-
cle degeneracy problem and sample impoverishment problem, researches suggested
various improved resampling method [26, 27, 28, 29]. In this thesis, we apply the
simplest multinomial resampling (also known as simple random resampling), which
is the core idea of Bootstrap Filter algorithm.

2.2.5 Particle Filter Algorithm

Combination of SIS and resampling is the classical standard Particle Filter algo-
rithm. The algorithm can thus be summarised as follows and Figure 2.4 vividly
demonstrate the complete process of Particle Filter algorithm.

Algorithm 1 Standard Particle Filter Algorithm

At time t = 1, for all i ∈ {1, · · · , N}:
1. sample x

(i)
1 ∼ p (x1) = µθ (x1).

2. initial weight w̃
(i)
1 = 1

N
.

At time t ≥ 2, for all i ∈ {1, · · · , N}:
1. sample

x
(i)
t ∼ q

(
x

(i)
t | x

(i)
t−1, yt

)
= p

(
x

(i)
t | x

(i)
t−1

)
= fθ (xt | xt−1).

2. update and normalize particle weights

w
(i)
t = w

(i)
t−1p

(
yt | x(i)

t

)
w̃

(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

.

3. resample to obtain N new equally-weighted particles{
x̃jt ,

1
N

; j = 1, 2, · · · , N
}

.
4. state estimation
x̂t =

∑N
i=1 x

(i)
t · w̃

(i)
t .

18

𝑥𝑥𝑡𝑡−1𝑖𝑖 , 1/𝑁𝑁

𝑥𝑥𝑡𝑡−1𝑖𝑖 , �𝑤𝑤𝑡𝑡−1𝑖𝑖

�𝑥𝑥𝑡𝑡−1𝑖𝑖 , 1/𝑁𝑁

𝑥𝑥𝑡𝑡𝑖𝑖 , 1/𝑁𝑁

𝑥𝑥𝑡𝑡𝑖𝑖 , �𝑤𝑤𝑡𝑡𝑖𝑖

Figure 2.4: Particle Filter Process.

Since we can estimate the posterior probability density and posterior state by parti-
cle filter now, the corresponding likelihood (2.1.10) then can also be approximated.
For estimating the likelihood, we introduce the auxiliary particle filter(APF) algo-
rithm developed from the above standard PF algorithm. The APF is a popular
approach covering as special cases a large class of particle algorithms, such as the
bootstrap filter.

Given the particles at time t− 1, the APF proceeds to time t by three steps.

1. Resampling: The particles are resampled according to their auxiliary weights.

The result is an equally-weighted particle system
{
x̃

(i)
t , 1/N ; i = 1, 2, · · · , N

}
.

2. Propagation: The particles are propagated to time t by sampling from a pro-

posal kernel x
(i)
t ∼ Rθ

(
xt | x̃(i)

t−1, yt

)
.

3. Weighting: The (unnormalised) particle weight is calculated for each particle.
The importance weights are given by

w
(i)
t = Wθ

(
x

(i)
t , x̃

(i)
t−1

)
=
gθ

(
yt | x(i)

t

)
fθ

(
x

(i)
t | x̃

(i)
t−1

)
Rθ

(
x

(i)
t | x̃

(i)
t−1, yt

) . (2.2.29)

The bootstrap PF is just a special case of APF when Rθ

(
x

(i)
t | x̃

(i)
t−1, yt

)
=

fθ

(
x

(i)
t | x̃

(i)
t−1

)
, and thus w

(i)
t = gθ

(
yt | x(i)

t

)
. More sophisticated alternatives

of Rθ exist, for example, the fully-adapted PF.

19

Then we can calculate equation (2.1.9) by

pθ (yt | y1:t−1) =

∫
pθ (x1:t−1 | y1:t−1) pθ (xt | xt−1) pθ (yt | xt) dx1:t

=

∫
pθ (xt−1 | y1:t−1) pθ (xt | xt−1) pθ (yt | xt) dxt−1:t

=

∫
Wθ (xt, xt−1)Rθ (xt | xt−1, yt) pθ (xt−1 | y1:t−1) dxt−1:t.

(2.2.30)

To approximate the integral, we note that the (unweighted) particle pairs
{
x̃

(i)
t−1, x

(i)
t

}N
i=1

are approximately drawn from Rθ (xt | xt−1, yt) pθ (xt−1 | y1:t−1). Consequently, the
MC approximation of the above equation is obtained by

pθ (yt | y1:t−1) ≈ 1

N

N∑
i=1

w
(i)
t . (2.2.31)

By inserting this approximation into equation (2.1.10), we obtain the particle esti-
mate of the likelihood

L̂(θ) =
T∏
t=1

(
1

N

N∑
i=1

w
(i)
t

)
. (2.2.32)

However, working directly with the likelihood typically results in numerical dif-
ficulties. To avoid this problem in practice, we instead use an estimate of the
log-likelihood ̂̀(θ) = log L̂(θ) =

T∑
t=1

log

[
N∑
i=1

w
(i)
t

]
− T logN. (2.2.33)

The algorithm for approximating the likelihood(log-likelihood) can thus be sum-
marised as follows.

Algorithm 2 APF for log-likelihood estimation

Input: An SSM, observations: y1:T , no. particles: N .
Output: MC estimation of the log-likelihood: ̂̀(θ).
1: Initialise particles x

(i)
1 for i = 1 to N .

2: for t = 1 to T do

3: Resample the particles with weights
{
w

(i)
t−1

}N
i=1

.

4: Propagate the particles using Rθ (·).
5: Calculate new importance weights

{
w

(i)
t

}N
i=1

.

6: end for
7: Compute log-likelihood ̂̀(θ).

As previously discussed, the likelihood L(θ) and log-likelihood `(θ) play important
roles in both ML and Bayesian parameter inference. Details relating to parameter

20

inference will be discussed in the next chapter.

In practice, any physical system is nonlinear, as long as it is analyzed with suffi-
cient precision. Therefore, PF algorithms are developing rapidly in various fields
because of the good estimation performance in nonlinear and non-Gaussian systems.

2.3 State Estimation in Linear Gaussian SSM

In this section, we start to implement the PF algorithm based on the process we
discussed in the previous sections. To simplify, we consider the basic linear Gaus-
sian state-space (LGSS) model.

The particular LGSS model considered is given by

x1 ∼ µθ (x1) , xt
∣∣xt−1 ∼ N

(
xt;φxt−1, σ

2
v

)
, yt

∣∣xt ∼ N (yt;xt, σ2
e

)
, (2.3.1)

where parameters are denoted by θ = {φ, σv, σe} and N (x;µ, σ2) denote the Gaus-
sian density with mean µ and standard deviation σ > 0. φ ∈ (−1, 1) determines
the persistence of the state, while σv, σe ∈ R+ denote the standard deviations of
the state transition noise and the observation noise, respectively.

We begin with generating data from the model with T = 250 observations and
θ = {0.75, 1.00, 0.10} , x1 = 0. Figure 2.5 shows the simulated data record.

0 50 100 200

−4
−2

0
2

4
6

time

x t

0 50 100 200

−4
−2

0
2

4
6

time

y t

0 5 10 15 20 25

−0
.2

0.
2

0.
6

1.
0

time

AC
F

of
 y

Figure 2.5: Simulated data from the LGSS model with latent state (left), observa-
tions (middle), and autocorrelation function (ACF) of the observations (right).

Then we make use of the implementation of particle filter algorithm to estimate
the filtered state and to investigate the properties of this estimate. The estimates
from the particle filter are compared with the corresponding estimates from the
Kalman filter. As we have discussed in the previous sections, KF algorithm is an
optimal filtering algorithm for LGSS model. Thus, comparing with Kalman filter
is a sensible way to measure the performance of particle filter algorithm.

21

On the top of Figure 2.6, is the set of observations simulated from the LGSS model
we mentioned before. In the middle we present the difference between the state
estimate from the Kalman filter and the estimate from the particle filter algorithm
using N = 2000 particles. The accuracy of particle filter algorithm can also be
measured by the bias (absolute error) and the mean square error (MSE) of the
state estimation. The bias is defined by

Bias
(
x̂Nt
)

=
1

T

T∑
t=1

∣∣x̂Nt − x̂t∣∣ , (2.3.2)

and the mean square error is denoted by

MSE
(
x̂Nt
)

=
1

T

T∑
t=1

(
x̂Nt − x̂t

)2
, (2.3.3)

where x̂Nt denotes the estimation from PF algorithm and x̂t is the estimation ob-
tained by KF algorithm. Their logarithms for different values of N are presented in
the bottom of Figure 2.6. We can see that the bias and the MSE decrease rapidly
as N increases.

22

0 50 100 150 200 250

−
6

−
4

−
2

0
2

4
6

time

ob
se

rv
at

io
n

0 50 100 150 200 250

−
0.

10
0.

00
0.

05
0.

10

time

er
ro

r
in

 s
ta

te
 e

st
im

at
e

0 200 400 600 800 1000

−
5

−
4

−
3

−
2

−
1

0

no. particles (N)

lo
g−

bi
as

●

●

●

●

●

●

●

0 200 400 600 800 1000

−
10

−
8

−
6

−
4

−
2

0

no. particles (N)

lo
g−

M
S

E

●

●

●

●

●

●

●

Figure 2.6: Top: a simulated set of observations yt from the LGSS model. Middle:
the error in latent state estimate using particle filter algorithm with N = 2000.
Bottom: the estimated log-bias (left) and log-MSE (right) for the particle filter
algorithm with different number of particles N.

23

Chapter 3

Parameter Inference Using Particle Methods

In this chapter, We describe how the particle filtering algorithm can be used to
implement parameter inference techniques. We give some overview of Bayesian
parameter inference and maximum likelihood parameter inference first and then
proceeds with the implementation of these methods with some examples.

3.1 Bayesian parameter inference

3.1.1 Overview of Bayesian methods

Sampling based approaches or approximate analytical computations are main ideas
to do Bayesian parameter inference. Examples of sampling based approaches are
MCMC methods or SMC methods [35]. Examples of analytical approximations are
the integrated nested Laplace approximation (INLA) [36], variational Bayes (VB)
[37], and expectation propagation (EP) [38].

In this section, we are primarily interested in the particle Metropolis-Hastings
(PMH) algorithm for Bayesian parameter inference and some examples will be
shown here. A tutorial article [39] provides a comprehensive introduction to the
particle Metropolis-Hastings (PMH) algorithm for parameter inference. We do not
introduce the details about PMH in this thesis. We just do parameter inference
by PMH method mentioned in that tutorial article first in this section and then
compare with the results from ML methods in next section.

3.1.2 Estimating the parameters in LGSS model

To simplify the parameter inference problem in the LGSS model (2.3.1), we assume
θ = φ is the only unknown parameter and keep {σv, σe} = {1.00, 0.10} fixed to
their true values. Following the PMH algorithm in article [39], setting the initial
value of the Markov chain by θ0 = 0.5, the number of iterations by K = 2000, and
the number of particles by N = 5000, we can get the results of parameter inference
by PMH algorithm as shown in figure 3.1. Three runs of PMH are presented using
different step sizes ε = 0.01 (left), 0.10 (center) and 0.50 (right). To make sure that
the Markov chain has reached its stationary regime, we discard the first 1000 itera-
tions as burn-in and only use the last 1000 iterations to approximate the parameter
posterior.

The resulting estimate of the posterior mean is φ̂ = 0.66 for ε = 0.01 and 0.1, and
φ̂ = 0.65 for ε = 0.5. Actually, the choice of ε influences the correlation in the
Markov chain, thus a good choice of ε is important to obtain an efficient algorithm.

24

We note that the posterior estimate of unknown parameter differs slightly from the
true value 0.75. From the asymptotic theory of the Bayesian estimator, we know
that this is due to the relatively small sample size T and a finite K. If we set
number of observations T = 500, we will get the result φ̂ = 0.72, which is much
closer to the true value 0.75. And also, the estimated posterior variance will be
smaller, which means the results are more stable when T goes larger.

φ

po
st

er
io

r
es

tim
at

e

0.50 0.60 0.70 0.80

0
2

4
6

8
10

φ

po
st

er
io

r
es

tim
at

e
0.50 0.60 0.70 0.80

0
2

4
6

8
10

φ

po
st

er
io

r
es

tim
at

e

0.50 0.60 0.70 0.80

0
2

4
6

8
10

1000 1400 1800

0.
4

0.
5

0.
6

0.
7

0.
8

iteration

φ

1000 1400 1800

0.
4

0.
5

0.
6

0.
7

0.
8

iteration

φ

1000 1400 1800

0.
4

0.
5

0.
6

0.
7

0.
8

iteration
φ

0 10 20 30 40 50 60

−
0.

2
0.

2
0.

6
1.

0

iteration

A
C

F

0 10 20 30 40 50 60

−
0.

2
0.

2
0.

6
1.

0

iteration

A
C

F

0 10 20 30 40 50 60

−
0.

2
0.

2
0.

6
1.

0

iteration

A
C

F

Figure 3.1: The parameter inference results using PMH methods for different step
sizes:ε = 0.01 (left), 0.10 (center) and 0.50 (right). Top: histogram and kernel
density estimate. Middle: the state of the Markov chain after the 1000 burn-in.
Bottom: the estimated ACF of the Markov chain. Dotted lines in the top and
middle plots indicate mean value and the dotted lines in the bottom plot indicate
the 95% confidence intervals of the ACF coefficients.

3.1.3 Estimating the parameters in nonlinear model

We now proceeds with application of the PMH algorithm to infer the parameters
of a nonlinear SSM called stochastic volatility model [40]. The SV model is defined
by

x1 ∼ N
(
x1;µ,

σ2
v

1− φ2

)
,

xt+1 | xt ∼ N
(
xt+1;µ+ φ (xt − µ) , σ2

v

)
,

yt | xt ∼ N (yt; 0, exp (xt)) ,

(3.1.1)

25

where the parameters are denoted by θ = {µ, φ, σv}. Here, µ ∈ R, φ ∈ [−1, 1] and
σv ∈ R+ denote the mean value, the persistence and standard deviation of the state
process, respectively.

This model is important in econometrics, where the latent state xt is known as the
log-volatility and the observations yt are so-called log-returns. The log-volatility is
useful for risk management and to price various financial contracts [41].

In the tutorial article [39], the data from Quandl for the period between January 2,
2012 and January 2, 2014 are extracted to do parameter inference and the resulting
estimate are shown in Figure 3.2.

0 100 200 300 400 500

−
4

0
4

time

lo
g−

re
tu

rn
s

0 100 200 300 400 500

−
2

0
1

2

time

lo
g−

vo
la

til
ity

 e
st

im
at

e

µ

po
st

er
io

r
es

tim
at

e

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2500 3500 4500

−
1.

0
0.

0
1.

0

iteration

µ

0 20 40 60 80 100

−
0.

2
0.

4
1.

0

iteration

A
C

F
 o

f µ

φ

po
st

er
io

r
es

tim
at

e

0.88 0.92 0.96 1.00

0
10

20
30

2500 3500 4500

0.
88

0.
94

1.
00

iteration

φ

0 20 40 60 80 100

−
0.

2
0.

4
1.

0

iteration

A
C

F
 o

f φ

σv

po
st

er
io

r
es

tim
at

e

0.0 0.1 0.2 0.3 0.4

0
4

8

2500 3500 4500

0.
0

0.
2

0.
4

iteration

σ v

0 20 40 60 80 100

−
0.

2
0.

4
1.

0

iteration

A
C

F
 o

f σ
v

Figure 3.2: First two lines: the daily log-returns and estimated log-volatility with
95% confidence intervals of the NASDAQ OMXS30 index for the period between
January 2, 2012 and January 2, 2014. Bottom: the posterior estimate (left), the
trace of the Markov chain (middle) and the corresponding ACF (right) of the pa-
rameters obtained from PMH.

26

3.2 Maximum likelihood parameter inference

3.2.1 Overview of ML methods

The parameter inference problem in the ML framework is described in equation
(1.2.3). In most situations, it cannot be solved by analytical calculations. Instead
popular approaches are mainly based on optimisation and other iterative algorithms.
Gradient-based optimisation algorithms [30, 31] are widely used to maximise the
log-likelihood and thereby estimate the parameters of the model. This method
operates by an iterative application of

θ̂k+1 = θ̂k + εkŜ (θk) . (3.2.1)

where θ̂k denotes the current estimate of the parameter vector and θ̂k+1 is the pro-
posed next estimate. εk means the step length and Ŝ (θk) is the score function which
we will discuss in detail and show how to calculate later. Furthermore, if we can
estimate the Hessian matrix, Newton optimisation algorithm can be implemented
by iteration of

θ̂k+1 = θ̂k + εkĴ −1 (θk) Ŝ (θk) . (3.2.2)

where Ĵ is the information matrix (negative Hessian).

Another popular method for ML inference is the expectation maximisation algo-
rithm where the latent states are seen as missing information and are estimated
together with the parameter vector of the model. An additive functional which can
be obtained by smoothing is required in this algorithm. By using different smooth-
ing method, we can obtain different kinds of expectation maximisation algorithm
[32, 33, 34].

Here we are mainly interested in the Newton optimisation algorithm. Before we im-
plement the algorithm, from equation (3.2.2) we know that we should first calculate
the score function and the observed information matrix by particle filter algorithm.

Fisher’s identity for the score vector of the log-likelihood is

∇ log pθ (y1:t) =

∫
∇ log pθ (x1:t, y1:t) pθ (x1:t | y1:t) dx1:t. (3.2.3)

Similarly, the observed information matrix satisfies Louis’ identity

−∇2 log pθ (y1:t) = ∇ log pθ (y1:t)∇ log pθ (y1:t)
T − ∇

2pθ (y1:t)

pθ (y1:t)
, (3.2.4)

where

∇2pθ (y1:t)

pθ (y1:t)
=

∫
∇ log pθ (x1:t, y1:t)∇ log pθ (x1:t, y1:t)

T pθ (x1:t | y1:t) dx1:t

+

∫
∇2 log pθ (x1:t, y1:t) pθ (x1:t | y1:t) dx1:t.

(3.2.5)

27

To recursively compute the score and observed information matrix, we define the

vector α
(i)
t = ∇ log pθ

(
x

(i)
1:t, y1:t

)
, and the matrix β

(i)
t = ∇2 log pθ

(
x

(i)
1:t, y1:t

)
. Then

the particle approximation process for score vector and information matrix proceeds
as follows.

1. Resample the particle set
{
x

(i)
1:t−1, α

(i)
t−1, β

(i)
t−1

}N
i=1

using the weights
{
w

(i)
t−1

}
to

obtain a set of N new particles.

2. For i = 1, · · · , N , sample x
(i)
t ∼ qθ

(
· | yt, x(i)

t−1

)
, and compute the weights

w
(i)
t ∝

gθ

(
yt | x(i)

t

)
fθ

(
x

(i)
t | x

(i)
t−1

)
qθ

(
x

(i)
t , yt | x

(i)
t−1

) . (3.2.6)

3. Update
{
α

(i)
t , β

(i)
t

}N
i=1

, the score estimate St and observed information matrix

estimate Σt:

α
(i)
t = α

(i)
t−1 +∇ log gθ

(
yt | x(i)

t

)
+∇ log fθ

(
x

(i)
t | x

(i)
t−1

)
β

(i)
t = β

(i)
t−1 +∇2 log gθ

(
yt | x(i)

t

)
+∇2 log fθ

(
x

(i)
t | x

(i)
n−1

)
St =

N∑
i=1

w
(i)
t α

(i)
t , and Σt = StS

T
t −

N∑
i=1

w
(i)
t

(
α

(i)
t α

(i)T
t + β

(i)
t

)
.

(3.2.7)

The estimates are obtained by substituting p̂θ (x1:t | y1:t) for pθ (x1:t | y1:t) into equa-
tions (3.2.3) - (3.2.5).

3.2.2 Estimating the parameters in LGSS model

Consider the LGSS model (2.3.1) with the true parameter vector θ∗ = {0.75, 1.00, 0.10}.
We generate data of length T = 500 using the initial value x1 = 0. As as-
sumed in section 3.1.2, here φ is chosen to be the single unknown parameter and
{σv, σe} = {1.00, 0.10} fixed to their true values. We set the number of particles
by N = 5000 and calculate the log-likelihood, the score function and the expected
information matrix for different value of φ. The results are presented in Figure 3.3.

It can be seen obviously in the figure that the maximum of the log-likelihood is
near the true parameter and the score function is zero close to this point. Since
the score function is the slope of the log-likelihood, the zero of the score function
results in a maximum of the log-likelihood function when the expected information
(negative Hessian) is positive.

28

0.4 0.6 0.8 1.0 1.2

−
85

0
−

80
0

−
75

0
−

70
0

seq(phi − 0.5, phi + 0.5, len = lengthdata)

lo
gL

ik
el

ih
oo

d

0.4 0.6 0.8 1.0 1.2

−
40

0
0

20
0

seq(phi − 0.5, phi + 0.5, len = lengthdata)

sc
or

e

0.4 0.6 0.8 1.0 1.2

97
5

98
5

99
5

10
05

seq(phi − 0.5, phi + 0.5, len = lengthdata)

in
fo

Figure 3.3: The estimates of the log-likelihood (top) the score function (bottom
left) and the expected information matrix (bottom right) of the LGSS model by PF
algorithm. The dotted lines indicate the true value of the parameter φ (0.75).

Now that we have the estimates of log-likelihood, score function and expected infor-
mation, we can infer the value of φ by Newton optimisation. Here we set a stopping
point |θ̂k+1− θ̂k < 0.001| and initial value θ1 = 0.5 for the iteration equation (3.2.2).

That is, when this condition is arrived, we stop the iteration and return θ̂k+1 as
our estimate for the parameter. This method converges much fater than the PMH
method and the iteration will often be stopped in ten times. However, in the PMH
algorithm, we should discard the first 1000 iterations to ensure the stability.

To get a more convincing results, we generate 500 data sets from the same true
parameter vector and then run the estimation procedure on each of the simulated
data set to get 500 estimated parameter vectors. The results are presented in
Figure 3.4. The mean value of the 500 estimated parameter is φ̂ = 0.746 with

29

standard deviation = 0.03, which is very close to the true value 0.75. What’s more,
if we change the initial value of the iteration, both the convergence rate and the
estimated results are consistent(almost no difference). Therefore, it seems that
Newton optimisation based on PF algorithm is an efficient way to do parameter
inference in SSMs.

Figure 3.4: Estimated results by Newton optimisation. Top: estimated value of
parameter. Bottom: number of iterations to converge. The dotted lines are the
mean value of 500 simulations.

3.2.3 Estimating the parameters in nonlinear model

Similarly, to work on the SV model defined by equation (3.1.1), we generate data of
length T = 1000 with true parameter vector θ∗ = {µ∗, φ∗, σ∗v} = {−1.02, 0.95, 0.25}.

If we choose φ to be the unknown parameter, the estimates of the log-likelihood, the
score function and the expected information are presented in Figure 3.5. Similar
to the results of the LGSS model, at the position close to the true value of the

30

parameter, the log-likelihood has a maximum, the score function is zero and the
expected information is positive.

0.6 0.7 0.8 0.9 1.0

−
10

10
−

99
0

−
97

0

seq(low, high, len = lengthdata)

lo
gL

ik
el

ih
oo

d

0.6 0.7 0.8 0.9 1.0

−
40

0
−

20
0

0
20

0

seq(low, high, len = lengthdata)

sc
or

e

0.6 0.7 0.8 0.9 1.0

−
20

00
20

00
60

00

seq(low, high, len = lengthdata)

in
fo

Figure 3.5: The estimates of the log-likelihood (top) the score function (bottom
left) and the expected information matrix (bottom right) of the SV model by PF
algorithm for different values of φ. The dotted lines indicate the true value of the
parameter φ (0.95).

The estimates based on choosing µ to be the unknown parameter also returns the
same results, see Figure 3.6. We note that the curve of log-likelihood here is not
as smooth as other examples we mentioned before. We can make it smooth by
choosing a larger value of T .

31

−1.4 −1.2 −1.0 −0.8 −0.6

−
95

2
−

95
0

−
94

8
−

94
6

seq(low, high, len = lengthdata)

lo
gL

ik
el

ih
oo

d

−1.4 −1.2 −1.0 −0.8 −0.6

−
20

−
10

0
10

seq(low, high, len = lengthdata)

sc
or

e

−1.4 −1.2 −1.0 −0.8 −0.6

33
35

37
39

seq(low, high, len = lengthdata)

in
fo

Figure 3.6: The estimates of the log-likelihood (top) the score function (bottom
left) and the expected information matrix (bottom right) of the SV model by PF
algorithm for different values of µ. The dotted lines indicate the true value of the
parameter µ (-1.02).

Then we simulate 500 data set to infer the parameter. Results for φ and µ are
presented in Figure 3.7 and Figure 3.8 respectively. The mean value of the estimated
parameter is φ̂ = 0.9495, with 95% confidence interval [0.9339, 0.9652] and µ̂ =
−1.0254, with 95% confidence interval [-1.3505, -0.7004]. We note that for both
φ and µ, the Newton optimisation based on particle filter method gives a good
resulting estimate of the true value. Compared with the PMH algorithm, Newton
optimisation convergences much faster and returns more accurate results.

32

Figure 3.7: Estimated results for φ by Newton optimisation. Top: estimated value
of parameter. Bottom: number of iterations to converge. The dotted lines are the
mean value of 500 simulations.

33

Figure 3.8: Estimated results for µ by Newton optimisation. Top: estimated value
of parameter. Bottom: number of iterations to converge. The dotted lines are the
mean value of 500 simulations.

34

Chapter 4

Conclusion

We have described the Particle Filter algorithm to get the Monte Carlo approxima-
tion of the latent state in State Space models. What’s more, in parameter inference
problems, we apply this method to approximate the likelihood, score function and
Hessian matrix and thus get the maximum likelihood estimation of the unknown
parameter vector by Newton optimisation.

However, there are some topics we do not finish as planned and can be investigated
in the future. We have tried the LGSS model and SV model in this thesis and the
next step we planned is to work on the COGARCH model, which doesn’t have a
tractable log-likelihood.

The particle algorithm we implement in this thesis to compute the score function
and Hessian matrix is from the paper [30]. This paper also introduces another par-
ticle algorithm which has higher computational complexity but some other advan-
tages. What we can do in future is to apply the second algorithm in ML parameter
inference problems and compare the two methods.

35

References

[1] Cappé, Olivier and Moulines, Eric and Rydén, Tobias, Inference in hidden
Markov models, Springer Science & Business Media, 2006.

[2] Arnaud, Doucet and de Freitas, Nando and Gordon, Neil, Sequential Monte
Carlo methods in practice, Information Science and Statistics (Springer New
York, 2001) (2001).

[3] Elliott, Robert J and Aggoun, Lakhdar and Moore, John B, Hidden
Markov models: estimation and control, Springer Science & Business Me-
dia 29,(2008).

[4] West, Mike and Harrison, Jeff, Bayesian forecasting and dynamic models
Springer Science & Business Media (2006).

[5] Durbin, James and Koopman, Siem Jan,Time series analysis by state space
methods, Oxford university press (2012).

[6] Langrock, Roland, Some applications of nonlinear and non-Gaussian state–
space modelling by means of hidden Markov models, Journal of Applied Statis-
tics 38,12,(2011),2955–2970.

[7] Berger, James O, Statistical decision theory and Bayesian analysis, Springer
Science & Business Media (2013).

[8] Robert, Christian, The Bayesian choice: from decision-theoretic foundations
to computational implementation, Springer Science & Business Media (2007).

[9] Anderson, Brian DO and Moore, John B, Optimal filtering, Courier Corpo-
ration (2012).

[10] Stigler, Stephen M, Gauss and the invention of least squares, The Annals of
Statistics (1981),465–474.

[11] Agrawal, Akshay and Verschueren, Robin and Diamond, Steven and Boyd,
Stephen, A rewriting system for convex optimization problems, Journal of
Control and Decision 5(1),(2018),42–60.

[12] Wiener, Norbert, Extrapolation, interpolation, and smoothing of stationary
time series, vol. 2, MIT press Cambridge, MA (1949).

[13] Kolmogoroff, A, Interpolation und extrapolation von stationaren zufalli-
gen folgen, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
5(1),(1941),3–14.

[14] Kalman, Rudolph Emil, A new approach to linear filtering and prediction
problems, 1960.

[15] Bucy, Richard S and Senne, Kenneth D, Digital synthesis of non-linear filters,
Automatica 7(3),(1971),287–298.

[16] Sunahara, Yoshifumi, An approximate method of state estimation for nonlin-
ear dynamical systems, (1970).

36

[17] Julier, Simon J and Uhlmann, Jeffrey K, New extension of the Kalman filter
to nonlinear systems, Signal processing, sensor fusion, and target recognition
VI 3068,(1997),182–193.

[18] Gordon, Neil J and Salmond, David J and Smith, Adrian FM, Novel ap-
proach to nonlinear/non-Gaussian Bayesian state estimation, IEE proceedings
F (radar and signal processing) 140(2),(1993),107–113.

[19] Ho, YC and Lee, RCKA, A Bayesian approach to problems in stochastic esti-
mation and control, IEEE transactions on automatic control 9(4),(1964),333–
339.

[20] Hammersley, John M and Morton, K William, Poor man’s monte carlo, Jour-
nal of the Royal Statistical Society: Series B (Methodological) 16(1),(1954),
23–38.

[21] Marshall, Andrew W, The use of multi-stage sampling schemes in Monte Carlo
computations, RAND CORP SANTA MONICA CALIF (1954).

[22] Kong, Augustine and Liu, Jun S and Wong, Wing Hung, Sequential imputa-
tions and Bayesian missing data problems, Journal of the American statistical
association 89(425),(1994),278–288.

[23] Kong, Augustine, A note on importance sampling using standardized weights,
University of Chicago, Dept. of Statistics, Tech. Rep 348,(1992).

[24] Liu, Jun S and Chen, Rong, Sequential Monte Carlo methods for dynamic
systems, Journal of the American statistical association 93(443),(1998),1032–
1044.

[25] Bolic, Miodrag and Djuric, Petar M and Hong, Sangjin, Resampling algo-
rithms and architectures for distributed particle filters, IEEE Transactions
on Signal Processing 53(7),(2005),2442–2450.

[26] Fox, Dieter, Adapting the sample size in particle filters through KLD-
sampling, The international Journal of robotics research 22(12),(2003),985–
1003.

[27] Sankaranarayanan, Aswin C and Srivastava, Ankur and Chellappa, Rama,
Algorithmic and architectural optimizations for computationally efficient par-
ticle filtering, IEEE Transactions on Image Processing 17(5),(2008),737–748.

[28] Li, Tiancheng and Sattar, Tariq Pervez and Sun, Shudong, Deterministic
resampling: unbiased sampling to avoid sample impoverishment in particle
filters, Signal Processing 92(7),(2012),1637–1645.

[29] Balasingam, Balakumar and Bolić, Miodrag and Djurić, Petar M and Miguez,
Joaquin, Efficient distributed resampling for particle filters, 2011 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2011),3772–3775.

[30] Poyiadjis, George and Doucet, Arnaud and Singh, Sumeetpal S, Particle ap-
proximations of the score and observed information matrix in state space mod-
els with application to parameter estimation, Biometrika 98(1),(2011),65–80.

[31] Yıldırım, Sinan and Singh, Sumeetpal S and Dean, Thomas and Jasra, Ajay,
Parameter estimation in hidden Markov models with intractable likelihoods
using sequential Monte Carlo, Journal of Computational and Graphical Statis-
tics 24(3),(2015),846–865.

37

[32] Del Moral, Pierre and Doucet, Arnaud and Singh, Sumeetpal, Forward
smoothing using sequential Monte Carlo, arXiv preprint arXiv:1012.5390
(2010).

[33] Lindsten, Fredrik and Schön, Thomas B, Backward simulation methods for
Monte Carlo statistical inference, Foundations and Trends R© in Machine
Learning 6(1),(2013),1–143.

[34] Schön, Thomas B and Wills, Adrian and Ninness, Brett, System identification
of nonlinear state-space models, Automatica 47(1),(2011),39–49.

[35] Chopin, Nicolas and Jacob, Pierre E and Papaspiliopoulos, Omiros, SMC2: an
efficient algorithm for sequential analysis of state space models, Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 75(3),(2013),397–
426.

[36] Rue, H̊avard and Martino, Sara and Chopin, Nicolas, Approximate Bayesian
inference for latent Gaussian models by using integrated nested Laplace ap-
proximations, Journal of the royal statistical society: Series b (statistical
methodology) 71(2),(2009),319–392.

[37] Bishop, Christopher M, Pattern recognition and machine learning, Springer
2006.

[38] Minka, Thomas P, Expectation propagation for approximate Bayesian infer-
ence, arXiv preprint arXiv:1301.2294 (2013).

[39] Dahlin, Johan and Schön, Thomas B, Getting started with particle
Metropolis-Hastings for inference in nonlinear dynamical models, Journal of
Statistical Software 88(CN2),(2019),1–41.

[40] Hull, John and White, Alan, The pricing of options on assets with stochastic
volatilities, The journal of finance 42(2),(1987),281–300.

[41] Hull, John C, Options, Futures, and other Derivatives (ed.), Upper Saddle
River, NJ: Prentice Hall, 2009

38

	Introduction
	General Knowledge of State Space Model
	Inference Problems for State Space Model
	Filtering Algorithms
	Linear Filtering Algorithms
	Nonlinear Filtering Algorithms
	Monte Carlo Approximation

	State Inference Using Particle Methods
	Recursive Bayesian Estimation
	Monte Carlo and Importance Sampling
	Monte Carlo method
	Importance Sampling
	Sequential Importance Sampling
	Resampling
	Particle Filter Algorithm

	State Estimation in Linear Gaussian SSM

	Parameter Inference Using Particle Methods
	Bayesian parameter inference
	Overview of Bayesian methods
	Estimating the parameters in LGSS model
	Estimating the parameters in nonlinear model

	Maximum likelihood parameter inference
	Overview of ML methods
	Estimating the parameters in LGSS model
	Estimating the parameters in nonlinear model

	Conclusion
	References

